Evolutionary Biclustering of Clickstream Data

نویسندگان

  • R. Rathipriya
  • K. Thangavel
  • J. Bagyamani
چکیده

Biclustering is a two way clustering approach involving simultaneous clustering along two dimensions of the data matrix. Finding biclusters of web objects (i.e. web users and web pages) is an emerging topic in the context of web usage mining. It overcomes the problem associated with traditional clustering methods by allowing automatic discovery of browsing pattern based on a subset of attributes. A coherent bicluster of clickstream data is a local browsing pattern such that users in bicluster exhibit correlated browsing pattern through a subset of pages of a web site. This paper proposed a new application of biclustering to web data using a combination of heuristics and meta-heuristics such as K-means, Greedy Search Procedure and Genetic Algorithms to identify the coherent browsing pattern. Experiment is conducted on the benchmark clickstream msnbc dataset from UCI repository. Results demonstrate the efficiency and beneficial outcome of the proposed method by correlating the users and pages of a web site in high degree.This approach shows excellent performance at finding high degree of overlapped coherent biclusters from web data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Swarm Intelligence- Based Biclustering Approach for Recommendation of Web Pages

This chapter focuses on recommender systems based on the coherent user’s browsing patterns. Biclustering approach is used to discover the aggregate usage profiles from the preprocessed Web data. A combination of Discrete Artificial Bees Colony Optimization and Simulated Annealing technique is used for optimizing the aggregate usage profiles from the preprocessed clickstream data. Web page recom...

متن کامل

Usage Profile Generation from Web Usage Data Using Hybrid Biclustering Algorithm

Biclustering has the potential to make significant contributions in the fields of information retrieval, web mining, and so forth. In this paper, the authors analyze the complex association between users and pages of a web site by using a biclustering algorithm. This method automatically identifies the groups of users that show similar browsing patterns under a specific subset of the pages. In ...

متن کامل

Usage Profile Generation from Web Usage Data Using Hybrid Biclustering Algorithm

Biclustering has the potential to make significant contributions in the fields of information retrieval, web mining, and so forth. In this paper, the authors analyze the complex association between users and pages of a web site by using a biclustering algorithm. This method automatically identifies the groups of users that show similar browsing patterns under a specific subset of the pages. In ...

متن کامل

Extraction of Target User Group from Web Usage Data Using Evolutionary Biclustering Approach

Data mining extracts hidden information from a database that the user did not know existed. Biclustering is one of the data mining technique which helps marketing user to target marketing campaigns more accurately and to align campaigns more closely with the needs, wants, and attitudes of customers and prospects. The biclustering results can be tuned to find users’ browsing patterns relevant to...

متن کامل

Analysis of Click Stream Patterns using Soft Biclustering Approaches

As websites increase in complexity, locating needed information becomes a difficult task. Such difficulty is often related to the websites’ design but also ineffective and inefficient navigation processes. Research in web mining addresses this problem by applying techniques from data mining and machine learning to web data and documents. In this study, the authors examine web usage mining, appl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1106.2312  شماره 

صفحات  -

تاریخ انتشار 2011